10 ВЕЛИКИХ МАТЕМАТИКОВ

 

1.Леонард Эйлер
Он считается самым великим математиком в истории человечества. Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор по Эйлеру.

2. Карл Фридрих Гаусс
Считается королем математики. Многие знают о Гауссе из-за его удивительных умственных способностей еще в детстве он мог за секунды сосчитать сумму чисел от 1 до 100. С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: алгебре, дифференциальной и неевклидовой геометрии, в математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в астрономии, геодезии и механике.

3. Бернард Риман
Этот ученый стал одним из самых выдающихся математиков 19 в. У него большой вклад в геометрию, а многие теоремы носят его имя. Гипотеза Римана входит в список семи проблем тысячелетия, за решение каждой из которых Математический институт Клэя выплатит приз в один миллион долларов США.

4. Евклид
Считается отцом геометрии, а его великий труд Элементы - одной из самых великих работ по математике в истории. Евклид доказал множество теорем и гипотез.

5. Рене Декарт
Французский философ, физик и математик Рене Декарт известен своим методом радикального сомнения. Тем не менее, этот ученый внес большой вклад в математику. Вместе с Ньютоном и Лейбницем основал современное исчисление.

6. Алан Тьюринг
Один из самых великих умов 20 в. Во время второй мировой войны он сделал множество открытий и создал методы расшифровки закодированных сообщений немцев. Он также считается одним из первых настоящих ученых, работающих с компьютером.

7. Леонардо Пизанский
Один из самых великих математиков Средних Веков. Невозможно представить современный бухгалтерский и вообще финансовый учет без использования десятичной системы счисления и арабских цифр, начало использования которых в Европе было положено Леонардо.

8. Исаак Ньютон и Вильгельм Лейбниц
В равной степени эти великие ученые внесли свою лепту в развитие математической науки. Они оба создали современный математический анализ дифференциальное и интегральное исчисление, основанные на бесконечно малых.

9. Эндрю Уайлс
Единственный еще живущий математик из этого списка, Эндрю Уайлс известен тем, что доказал последнюю теорему Ферма. Чтобы найти решение он буквально заточил себя в 4х стенах на 7 лет. Когда оказалось, что в решении была ошибка, он закрылся еще на год, чтобы найти ее.

10. Пифагор
Греческий математик Пифагор считается одним из самых великих. Он жил в Греции в 570-495 гг до н.э. Известен тем, что основал школу пифагорейцев. Также упоминается его имя в связи с известной теоремой в тригонометрии. Однако некоторые источники сомневаются, что именно он доказал ее. Тем не менее, теорема Пифагора играет важную роль в современных измерениях и технологическом оборудовании. Можно даже назвать Пифагора отцом современной математики.

ЛЕОНАРД ЭЙЛЕР

В 1693 г. 23-летний Пауль Эйлер окончил курс теологии в Базельском университете. Но учёных теологов было в те годы больше, чем требовалось, и лишь в 1701 г. он получил официальную должность священника сиротского дома в Базеле. 19 апреля 1706 г. пастор Пауль Эйлер женился на дочери священника. А 15 апреля 1707 г. у них родился сын, названный Леонардом.

Начальное обучение будущий учёный прошёл дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Добрый пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Мальчик увлёкся математикой, стал задавать отцу вопросы один сложнее другого.

Когда у Леонардо проявился интерес к учёбе, его направили в базельскую латинскую гимназию — под надзор бабушки. 20 октября 1720 г. 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета: отец желал, чтобы он стал священником. Но любовь к математике, блестящая память и отличная работоспособность сына изменили эти намерения и направили Леонарда по иному пути.

Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике. И немудрено, что способный мальчик вскоре обратил на себя внимание Бернулли. Он предложил юноше читать математические мемуары, а по субботам приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Николаем и Даниилом, также увлечённо занимавшимися математикой. А 8 июня 1724  г. 17-летний Леонард Эйлер произнёс по латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона — и был удостоен учёной степени магистра (в XIX веке в большинстве университетов Западной Европы учёная степень магистра была заменена степенью доктора философии).

В последующие два года юный Эйлер написал несколько научных работ. Одна из них, «Диссертация по физике о звуке», получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики. Но, несмотря на положительный отзыв о «Диссертации», 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Однако это обстоятельство обернулось счастьем и для самого Эйлера и для науки в целом.

В начале зимы 1726 года Эйлеру сообщили из Санкт-Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии. Эйлер был молод и полон энергии. Ни в магистрате, ни в университете он не мог найти применения своим силам и способностям. 5 апреля 1727 года он навсегда покидает Швейцарию.

В начале XVIII в. великий философ и математик Г. В. Лейбниц разработал проект создания академий в различных городах Европы. По просьбе Петра I, Лейбниц прислал и в Петербург несколько писем-рекомендаций по организации Академии. 22 января 1724 г. Пётр I утвердил проект устройства Петербургской Академии28 январявышел указ сената о создании Академии. Из 22 профессоров и адъюнктов, приглашённых в первые годы, оказалось 8 математиков, которые занимались также механикой, физикой, астрономией, картографией. С первых лет своего существования Петербургская Академия занялась и подготовкой русских учёных. Позднее при Академии созданыуниверситет и гимназия.

Академия обратилась к своим членам с просьбой: составить руководства для первоначального обучения наукам. И Эйлер, не считаясь со временем, составил на немецком языке прекрасное «Руководство к арифметике», которое вскоре было переведено на русский и сослужило добрую службу многим учащимся. Перевод первой части выполнил в 1740 г. первый русский адъюнкт Академии, ученик Эйлера Василий Адодуров. На русском языке это было первым изложением арифметики как математической науки.

В 1730 г., когда на русский престол вступила Анна Иоанновна, страной фактически стали править её приближённые. Они видели в Академии учреждение, которое требовало много денег и не приносило ощутимой пользы. Ходили даже слухи о скором закрытии Академии.

Однако Академия продолжала существовать. Освободившееся место профессора физики было предложено Эйлеру. Одновременно он получил и значительное увеличение оклада. Ещё через два года Эйлер стал академиком и профессором чистой математики.

В один из последних дней 1733 г. 26-летний Леонард Эйлер женился на дочери живописца Екатерине Гзель, которой в это время тоже было 26 лет.

Молодожёнам преподнесли сочинённые к случаю стихи. Вот одна строфа из них:

В том усомниться мог ли кто-то,
Что Эйлер удивит весь мир,
Что только цифры и расчёты
Его единственный кумир.
Теперь совсем в другом он мире,
Где чувства, счастье и любовь
И то что дважды два — четыре,
Доказывать придётся вновь!

Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 г. Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за 3 дня — и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз. Однако учёный отнёсся к несчастью с величайшим спокойствием: «Теперь я меньше буду отвлекаться от занятий математикой», — философски заметил он.

До этого времени Эйлер был известен лишь узкому кругу учёных. Но двухтомное сочинение «Механика, или наука о движении, в аналитическом изложении», изданное в 1736 г., принесло ему мировую славу. Эйлер блестяще применил методы математического анализа к решению проблем движения в пустоте и в сопротивляющейся среде. «Тот, кто имеет достаточные навыки в анализе, сможет всё увидеть с необычайной лёгкостью и без всякой помощи прочитает работу полностью», — заканчивает Эйлер своё предисловие к книге.

Дух времени требовал аналитического пути развития точных наук, применения дифференциального и интегрального исчисления для описания физических явлений. Этот путь и начал прокладывать Леонард Эйлер. «30-летний Эйлер стал знаменитостью», — пишет его биограф Отто Шпис,- «Однако плохо, что он жил в далёком Петербурге, где Академия не пользовалась должным уважением, и к тому же в постоянной вражде с „правителем дел“ Шумахером».

Обстоятельства ухудшились, когда в 1740 г. умерла императрица Анна Иоанновна, царём был объявлен малолетний Иоанн VI. «Предвиделось нечто опасное, — писал позднее Эйлер в автобиографии. — После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным». Эйлер принимает предложение прусского короля, который приглашал его в Берлинскую Академиюна весьма выгодных условиях.

В соответствии с поданным Эйлером прошением, он был «отпущен от Академии в 1741 году» и утверждён почётным академиком. Он обещал по мере своих сил помогать Петербургской Академии — и действительно помогал весьма существенно все 25 лет, пока не вернулся обратно в Россию. В июне 1741 г. Леонард Эйлер с женой, двумя сыновьями и четырьмя племянниками прибыл в Берлин.

В течение всего времени пребывания в Берлине Эйлер продолжал оставаться почётным членом Петербургской Академии. Как он и обещал при отъезде из Петербурга, он по-прежнему печатал многие из своих трудов в изданиях Петербургской Академии; редактировал математические отделы русских журналов; приобретал из Петербурга книги, инструменты; у него на квартире, на полном пансионе, разумеется, за соответствующую оплату (которую, кстати, канцелярия Академии присылала с большим опозданием), годами жили молодые русские учёные, командированные на стажировку.

В 1742 г. вышло четырёхтомное собрание сочинений И. Бернулли. Посылая его из Базеля Эйлеру в Берлин, старый учёный писал своему ученику: «Я посвятил себя детству высшей математики. Ты, мой друг, продолжишь её становление в зрелости».

Эйлер оправдал надежды своего учителя. Одна за другой выходят его научные работы колоссальной важности: «Введение в анализ бесконечных» (1748 г.), «Морская наука» (1749 г.), «Теория движения луны» (1753 г.), «Наставление по дифференциальному исчислению» (1755  г.) — не говоря уже о десятках статей по отдельным частным вопросам, печатавшихся в изданиях Берлинской и Петербургской Академий.

Огромную популярность приобрели в XVIII, а отчасти и в XIX в. Эйлеровы «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе…», которые выдержали свыше 40 изданий на 10 языках.

Эйлер не стремится удивить читателя; он вместе с читателем как бы проходит весь путь, ведущий к открытию, показывает всю цепь рассуждений и умозаключений, приводящую к результату. Он умеет поставить себя в положение ученика; он знает, в чём ученик может встретить затруднение, — и стремится предупредить это затруднение.

В 1757 г. Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения. Почти сто лет спустя, когда во многих странах — и прежде всего в Англии — стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.

Эйлер «выдавал» в среднем 800 страниц «ин-кварто» в год. Это было бы немало даже для создателя романов; для математика же такой объём научных трудов, очень чётко изложенных, включающих механику и теорию чисел, анализ и музыку, астрономию и физику, теорию вероятностей и оптику — просто не укладывается в сознании! Однако в 1762 г. на русский престол вступила Екатерина II, получившая прозвище «Великая», которая осуществляла политику просвещённого абсолютизма. Она хорошо понимала значение науки как для процветания государства, так и для собственного престижа; провела ряд важных по тому времени преобразований в системе народного просвещения и культуры.

Фридрих II «отпускал» на Берлинскую Академию лишь 13 тыс. талеров в год, а Екатерина II ассигновала свыше 60 тыс. рублей — сумму более значительную. Императрица приказала предложить Эйлеру управление математическим классом (отделением), звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, — говорилось в письме, — благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург».

Эйлер подаёт Фридриху прошение об увольнении со службы. Тот не отвечает. Эйлер пишет вторично — но Фридрих не желает даже обсуждать вопрос об отъезде Эйлера. В ответ на это он перестаёт работать для Берлинской Академии. 30 апреля 1766 г. Фридрих наконец-то разрешает великому учёному уехать в Россию. Сразу же по прибытии Эйлер был принят императрицей. Екатерина осыпала учёного милостями: пожаловала деньги на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.

После возвращения в Петербург у Эйлера образовалась катаракта второго, левого глаза — он перестал видеть. Однако это не отразилось на его работоспособности. Он диктовал свои труды мальчику-портному, который всё записывал по-немецки.

В 1771 г. в жизни Эйлера произошли два серьёзных события. В мае в Петербурге случился большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спас приехавший ранее из Базеля швейцарский ремесленник Пётр Гримм. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны», но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память. Эйлеру пришлось переселиться в другой дом, расположение комнат и предметов в котором было ему незнакомо. Однако эта неприятность оказалась, к счастью, лишь временной.

В сентябре того же года в Санкт-Петербург прибыл известный немецкий окулист барон Венцель, который согласился сделать Эйлеру операцию — и удалил с левого глаза катаракту. За работой приезжей знаменитости приготовились было наблюдать 9 местных светил медицины. Но вся операция заняла 3 минуты — и Эйлер снова стал видеть! Искусный окулист предписал беречь глаз от яркого света, не писать, не читать — лишь постепенно привыкать к новому состоянию. Но разве мог Эйлер «не вычислять»? Уже через несколько дней после операции он снял повязку. И вскоре потерял зрение снова. На этот раз — окончательно. Однако, как ни странно, отнёсся он к событию с величайшим спокойствием. Научная продуктивность его даже возросла: без помощников он мог только размышлять, а когда приходили помощники, диктовал им или писал мелом на столе, кстати сказать, вполне разборчиво, ибо кое-как мог отличить белый цвет от чёрного.

В 1773 г. по рекомендации Д. Бернулли в Петербург приехал из Базеля его ученик Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера. Вскоре Фусс женился на внучке Эйлера. В последующие десять лет — до самой своей смерти — Эйлер именно ему диктовал свои труды.

В 1773 г. умерла жена Эйлера, с которой он прожил почти 40 лет. Это было большой потерей для учёного, искренне привязанного к семье. В последние годы жизни учёный продолжал усердно работать, пользуясь для чтения «глазами старшего сына» и ряда своих учеников

 

Надгробие Л. Эйлера, гранитный саркофаг,1837 год

В сентябре 1783 г. учёный стал ощущать головные боли и слабость. 7 (18) сентября после обеда, проведённого в кругу семьи, беседуя с А. И. Лекселем об недавно открытой планете Уран и её орбите, он внезапно почувствовал себя плохо. Эйлер успел произнести «Я умираю» — и потерял сознание. Через несколько часов, так и не приходя в сознание, он скончался от кровоизлияния в мозг. «Эйлер перестал жить и вычислять». Его похоронили на Смоленском кладбище в Петербурге. Надпись на памятнике гласила: «Леонарду Эйлеру — Петербургская Академия».

В 1955 г. прах великого математика и надгробный памятник перенесены в «Некрополь XVIII в.» на Лазаревском кладбище Александро-Невской лавры

Карл Фридрих Гаусс
Carl Friedrich Gauß
Carl Friedrich Gauss.jpg

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогствеБрауншвейг. Уже в двухлетнем возрасте мальчик показал себявундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 50 \times 101=5050. До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледжCollegium Carolinum в Брауншвейге (1792—1795).

Свободно владея множеством языков, Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую, французскую и русскую литературу. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды НьютонаЭйлераЛагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетовЛежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер]. Это — наиболее плодотворный период в жизни Гаусса.

1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функциинеевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах АбеляЯкобиКошиЛобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.

1798 год: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатан только в1801 году.

В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицыиспользуются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, атеория чисел — царица математики.

1798—1816 годы

 
Памятник Гауссу в Брауншвейге с изображенной на нём 17-лучевой звездой
 

В 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.

Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д'Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета.

1801 год: избирается членом-корреспондентом Петербургской Академии наук.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки. Катализатором послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методом, и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.

Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.

1805 год: Гаусс женился на Иоганне Остгоф. У них было трое детей.

1806 год: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.

1807 год: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте.

1809 год: новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.

Как раз в четвёртую годовщину свадьбы умирает Иоганна, вскоре после рождения третьего ребёнка. В Германии разруха и анархия. Это самые тяжёлые годы для Гаусса.

1810 год: новая женитьба — на Минне Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличивается до шести.

1810 год: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.

1811 год: появляется новая комета. Гаусс быстро и очень точно рассчитывает её орбиту. Начинает работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.

1812 год: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.

Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.

1815 год: публикует первое строгое доказательство основной теоремы алгебры.

1816—1855 годы

1820 год: Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в т. ч. методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления — высшей геодезии, и организовал съёмку местности и составление карт.

1821 год: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».

Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил методконформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.

1824 год: избирается иностранным почётным членом Петербургской Академии наук.

 
Гаусс в 1828 г.

1825 год: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.

1829 год: в замечательной работе «Об одном новом общем законе механики», состоящей всего из четырёх страниц, Гаусс обосновывает новыйвариационный принцип механики — принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной»[8].

 
Гаусс и Вебер. Скульптура в Гёттингене.

1831 год: умирает вторая жена, у Гаусса начинается тяжелейшая бессонница. В Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году, в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.

1832 год«Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.

1833 год: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.

1837 год: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.

1839 год: 62-летний Гаусс овладевает русским языком и в письмах вПетербургскую Академию просил прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работамЛобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентомГёттингенского королевского общества.

В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» изложил основы теории потенциала, включая ряд основополагающих положений и теорем — например, основную теорему электростатики (теорема Гаусса).

1840 год: в работе «Диоптрические исследования» Гаусс разработал теорию построения изображений в сложных оптических системах.

Умер Гаусс 23 февраля 1855 года в Гёттингене.

Современники вспоминают Гаусса как жизнерадостного, дружелюбного человека, с отличным чувством юмора.

Добавлено: 9.11.2015 г.

Георг Фридрих Бернхард Риман 

Bernhard riemann.jpg

Георг Фридрих Бернхард Риман (нем. Georg Friedrich Bernhard Riemann17 сентября 1826 годаБрезеленцГанновер — 20 июля1866 годаСеласкаИталия, близ Лаго-Маджоре) — немецкийматематикмеханик и физик. За свою короткую жизнь (всего 10 лет трудов) он преобразовал сразу несколько разделов математики. «Мы склонны видеть в Римане, может быть, величайшего математика середины XIX века, непосредственного преемникаГаусса», — отмечал академик П. С. Александров[2].

Биография

Родился в семье бедного пастора, вторым из шести его детей, в деревне Брезеленц, недалеко от Данненберга. Смог начать посещать школу лишь в 14 лет (1840). Мать Римана, Шарлотта Эбелль, умерла от туберкулёза, когда он ещё учился в школе; от этой же болезни умерли две его сестры (и, впоследствии, умрёт он сам).

Наклонности к математике проявлялись у молодого Римана ещё в детстве, но, уступая желанию отца, в 1846 году он поступил вГёттингенский университет для изучения филологии и богословия. Однако здесь он слушает лекции К. Ф. Гаусса и принимает окончательное решение стать математиком[3].

В 1847 г. Риман переходит в Берлинский университет, где слушает лекции П. Г. ДирихлеК. Г. Я. Якоби и Я. Штейнера. В 1849 г. он возвращается в Гёттинген[3], где знакомится сВильгельмом Вебером, который становится его учителем и близким другом; годом позже приобретает ещё одного друга — Рихарда Дедекинда.

 
Риманова поверхность (комплексный логарифм)

В 1851 году Риман защищает диссертацию «Основания теории функций комплексной переменной», где впервые было введено понятие, позже получившее известность как риманова поверхность. В 1854—1866 гг. он работает в Гёттингенском университете[3].

Чтобы претендовать на должность экстраординарного профессора, Риман по уставу должен был выступить перед профессорским составом. Осенью 1853 года Риман читает в присутствии Гаусса исторический доклад «О гипотезах, лежащих в основании геометрии», с которого ведёт своё началориманова геометрия. Доклад, впрочем, не помог — Римана не утвердили. Однако текст выступления был опубликован (хотя и с большим опозданием — в 1868 г.), и это стало эпохальным событием для геометрии. Всё же Риман был принят приват-доцентом Гёттингенского университета, где читает курс абелевых функций.

В 1857 году Риман опубликовал классические труды по теории абелевых функций и аналитической теории дифференциальных уравнений и был переведён на должность экстраординарного профессора Гёттингенского университета.

1859: после смерти Дирихле Риман — ординарный профессор Гёттингенского университета. Читает лекции поматематической физике (изданы посмертно его учениками). Вместе с Дедекиндом совершает поездку в Берлинский университет, где общается с ВейерштрассомКуммеромКронекером. После чтения там знаменитой работы «О числе простых чисел, не превышающих заданной величины» избран членом Берлинской академии наук. Эта работа исследовала распределение простых чисел и свойства ζ-функции (функции Римана).

 
Надгробная плита Римана (кладбище Биганцоло, Италия).

1862: Женился на Эльзе Кох, подруге покойной сестры. У них родилась дочь Ида. К несчастью, вскоре после женитьбы Риман простудился и серьёзно заболел.

1866: Риман скончался в Италии от туберкулёза в возрасте неполных 40 лет. Дедекинд, со слов жены, так описал его смерть [4]:

За день до своей смерти он лежал под смоковницей, его переполняла радость при виде великолепного пейзажа, он работал над своей последней книгой, к сожалению, оставшейся незаконченной. Кончина пришла тихо, без напряжения или агонии смерти; казалось, будто бы он с интересом следил, как душа расставалась с его телом; его жене пришлось дать ему хлеб и вино, он попросил её передать его любовь домашним, сказав: «Поцелуй наше дитя». Она читала вместе с ним молитву Господню, он не мог больше говорить; со словами «И остави нам долги наша» он благочестиво поднял глаза, она почувствовала, как его рука холодеет в её руке, и ещё через несколько вздохов, его чистое, благородное сердце перестало биться.

Посмертный сборник трудов Римана, подготовленный Дедекиндом, содержал всего один том. Могила Римана в Италии была заброшена и позже уничтожена при перепланировке кладбища, но надгробная плита уцелела и в наши дни установлена у стены кладбища.

работы по математике

В знаменитом докладе «О гипотезах, лежащих в основании геометрии» (нем. Über die Hypothesen, welche der Geometrie zu Grunde Liegen) Риман определил общее понятие n-мерного многообразия и его метрику в виде произвольной положительно определённой квадратичной формы, что сейчас называется римановой метрикой (не путать с топологической метрикой). Далее Риман обобщил гауссову теорию поверхностей на многомерный случай; при этом был впервые введён тензор кривизны и другие понятия римановой геометрии. Существование метрики, по Риману, объясняется либо дискретностью пространства, либо некими физическими силами связи — здесь он предвосхитил общую теорию относительностиАльберт Эйнштейн писал: «Риман первый распространил цепь рассуждений Гаусса на континуумы произвольного числа измерений, он пророчески предвидел физическое значение этого обобщения евклидовой геометрии»[5].

Риман также высказал предположение, что геометрия в микромире может отличаться от трёхмерной евклидовой

Эмпирические понятия, на которых основывается установление пространственных метрических отношений,— понятия твёрдого тела и светового луча, по-видимому, теряют всякую определённость в бесконечно малом. Поэтому вполне мыслимо, что метрические отношения пространства в бесконечно малом не отвечают геометрическим допущениям; мы действительно должны были бы принять это положение, если бы с его помощью более просто были объяснены наблюдаемые явления.

 
Бернхард Риман (1863)

В другом месте этой же работы Риман указал, что допущения евклидовой геометрии должны быть проверены также и «в сторону неизмеримо большого», то есть в космологических масштабах. Глубокие мысли, содержащиеся в выступлении Римана, ещё долго стимулировали развитие науки.

Риман является создателем геометрического направления теориианалитических функций. Он ввёл носящие его имя поверхности (римановы поверхности) и разработал теорию конформных отображений[3].

При этом Риман развивает общую теорию многозначных комплексных функций, построив для них «римановы поверхности». Он использует не только аналитические, но и топологические методы; позднее его труды продолжилАнри Пуанкаре, завершив создание топологии.

Труд Римана «Теория абелевых функций» был важным шагом в бурном развитии этого раздела анализа в XIX веке. Риман ввёл понятие рода абелевой функции, классифицировал их по этому параметру и вывел топологическое соотношение между родом, числом листов и числом точек ветвления функции.

Вслед за Коши, Риман рассмотрел формализацию понятия интеграла и ввёл своё определение — интеграл Римана. Развил общую теорию тригонометрических рядов, не сводящихся к рядам Фурье.

В аналитической теории чисел большой резонанс имело исследование Риманом распределения простых чисел. Он дал интегральное представление дзета-функции Римана, исследовал её полюса и нули (см. Гипотеза Римана), вывел приближённую формулу для оценки количества простых чисел через интегральный логарифм.

ДОБАВЛЕНО: 19.12.2016

 

Евклид

Euclid Statue.jpg

Евкли́д или Эвкли́д (др.-греч. Εὐκλείδης, от «добрая слава»[1], время расцвета — около 300 года до н. э.) — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 в. до н. э.[2]

Евклид — первый математик Александрийской школы. Его главная работа «Начала» (Στοιχεῖα, в латинизированной форме — «Элементы») содержит изложение планиметриистереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид — автор работ по астрономии, оптике, музыке и др.[2]

Биография

К наиболее достоверным сведениям о жизни Евклида принято относить то немногое, что приводится в Комментариях Прокла к первой книге Начал Евклида. Отметив, что «писавшие по истории математики» не довели изложение развития этой науки до времени Евклида, Прокл указывает, что Евклид был старше Платоновскогокружка, но моложе Архимеда и Эратосфена и «жил во времена Птолемея I Сотера», «потому что и Архимед, живший при Птолемее Первом, упоминает об Евклиде и, в частности, рассказывает, что Птолемей спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что нет царского пути к геометрии».

Дополнительные штрихи к портрету Евклида можно почерпнуть у Паппа и Стобея. Папп сообщает, что Евклид был мягок и любезен со всеми, кто мог хотя бы в малейшей степени способствовать развитию математических наук, а Стобей передаёт ещё один анекдот о Евклиде. Приступив к изучению геометрии и разобрав первую теорему, один юноша спросил у Евклида: «А какая мне будет выгода от этой науки?» Евклид подозвал раба и сказал: «Дай ему триобола, раз он хочет извлекать прибыль из учёбы»[5]. Историчность рассказа сомнительна, поскольку аналогичный рассказывают о Платоне.

Некоторые современные авторы трактуют утверждение Прокла — Евклид жил во времена Птолемея I Сотера — в том смысле, что Евклид жил при дворе Птолемея и был основателем Александрийского Мусейона[6]. Следует, однако, отметить, что это представление утвердилось в Европе в XVII веке, средневековые же авторы отождествляли Евклида с учеником Сократа философом Евклидом из Мегар.

Арабские авторы считали, что Евклид жил в Дамаске и издал там «Начала» Аполлония.[7] Анонимная арабская рукопись XII века сообщает :

Евклид, сын Наукрата, известный под именем «Геометра», учёный старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира

В целом количество данных о Евклиде настолько скудно, что существует версия (правда, малораспространенная) что речь идет о коллективном псевдониме группы александрийских ученых[8].

«Начала» Евклида

 
Ватиканский манускрипт, т.1, 38v — 39r. Euclid I prop. 47 (теорема Пифагора)

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранееГиппократом ХиосскимЛеонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

 
Евклид открывает врата Сада Математики. Иллюстрация из трактата Никколо Тартальи «Новая наука»

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениямиГиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строится чётные совершенные числа, доказывается бесконечность множествапростых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию являетсяЕвдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов АрхимедаАполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к Началам в античности составляли ГеронПорфирийПаппПроклСимпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

ДОБАВЛЕНО: 19.12.2016